MacGram Notebook No. 1

THE MACHINE GRAMMAR & CORPUS OF LOGLAN

Incorporablng the Prial.1l9 Gramnar
! Pound 18 March 1982

The Notebook contalns four separately paginated Séctions wﬁich'ﬁay be
rearranged in any order:-

rqghe;Maqhigngrammar o 15 Pages
-~ A Glossary of MacGram Terms 22
= The Corpus 127
- The Preparser Program 9

Copyrxght (C) 1982 )
by o
The Loglan Institute, Inc.
2261 Soledad Rancho Road"
San Diego, Californla 92109 -
IJS A .



FOREWORD

The grammar described in these pages was developed by Scott Layson
and myself in San Diego from mid-January to mid-March of this
year. It was based on Jeff Prothero's August 1981 grammar, which
was in turn based on Sheldon Linker's June 1980 grammar, which was
in turn based on his own February 1978 grammar, which was the
first grammar of Loglan to be successfully "yacced"; see Glossary.

“Linker's 1978 grammar was in turn based on the 1967 Formal
Grammar, originally part of Loglan 2, that had been published in
The Loglanist in 1977. The 1967 grammar was in turn based on the
1962-63 sequence of grammars, developed on the University of
Florida computers, by which the language itself was built. So
MacGram already has a long history. '‘But it is this March 1982

- grammar which, for the first time demonstrates the machine-
readaBilityvof the "whole langauage", which means that part of it
that'we have so far managed to capture in this Corpus. ’

‘The language, its corpus, and its grammar are all likely to grow

“ - fairly rapidly from this decisive point. Please communicate to -me
- ‘directly any errors, deficiencies, or possible improvements that
--you may find. '

James Cooke Brown
San Diego
16 June 1982




THE MACHINE GRAMMAR OF LOGLAN

GRAMMAR.MAR Loglan grammar as of March 1982 Trial.19P
18 Mar 82

Copyright (C) 1982 by The Loglan Institute, Inc.

Created from JSP's Aug 81 grammar by SWL & JCB.

INTRODUCTION

This is the annotated (P for 'Publication') version of the Trial.19 machine
grammar of Loglan produced in San Diego last March. In this annotated form, of
course, the grammar will not yacc. The "actions" and all the special punctu-
ation marks required by Yacc have been removed for easier reading.

The notes are intended to give rough insights into why the rules are written

the way they are, and why they work the way they do. Keener insight can, of
course, only be obtained by close study of the way the Parser and Preparser act-
ually behave under the control of these rules and of the Preparser algorithms...
interactively with LIP, for example, or by studying the Corpus. But as a first
step toward understanding, anyway, I offer the loglanists this annotated time-
slice of the still-moving MacGram. ,

Pages 3 through 7 of this listing give the 63 Lexemes (word-classes) of the
current grammar in the alphabetical order of their names: the upper-case
expressions A, B4, CA, ete. The words used as lexeme names are nearly always
the simplest members of their lexemes. They are also semantically typieal,

so that replacing the actual words of an utterance with the names of the lexemes
to which they belong will nearly always produce an intelligible pseudo-utterance
with, of course, the same grammatical structure. The one non-typical lexeme
name is PREDA, which names the lexeme to which all predicate words belong; but
'preda' is of course a nonce word that means nothing. This semantically empty
label probably catches the vast and varied world of predicate meanings better
than any concrete predicate would do.

The word or words in lower-case after the colon in each entry show some or all
of the allolexes of that lexeme. Some lexemes, like CI, CUI, GA, GE, etc., are
monolexic. These are nearly always one of Loglan's "spoken punctuation marks".
Others, like JIO, LAE and PO, have very few members. In these cases the list
of allolexes is exhaustive. Some lexemes, like DJAN, NI, PA, PREDA and UI,

are unlimited. FEach has in principle an infinite number of allolexes, and in
in fact a great number of each are found in the current dictionaries. It is
probably a distinctive characteristic of Loglan among speakable languages that
the number of its unlimited lexemes is very small, while the number of its
small, finite lexemes is proportionally very large.

The Grammar itself begins on Page 8. It currently consists of 159 grammar rules
defining 62 Gramemes (or "nonterminals"). The grameme names are in lower-case
except for an occasional capital-letter or numerical suffix which shows the
grameme so-marked to be part of some developmental sequence. This printing
convention distinguishes the grameme names from the names of the lexemes (or
"terminals"), all of which are in upper-case.

The left-half of every grammar rule is a single grameme. Rules with the same



GRAMMAR

left-half are grouped together in the listing and their common left-half is

given only once. The right-half of every rule is a string of one or more gram-
emes and/or lexemes, up to 5 in the longest case. The sign '=>! may be

read 'becomes' or 'may be replaced by'. The grameme names are completely arbi-
trary and do not, apparently, appear at all in human consciousness. They are
evidently quite unnecessary for the learning of a grammar. Still, to facilitate
the study of the formal properties of this still-trial grammar, every effort has
been made to give the 62 gramemes useful names, in particular, names which
reflect the sequences in which the rules are developed. This has not always been

easy; some names remain obscure. Suggestions for better grameme names are
welcome.

A generator would take these grammar rules and, starting with the Initial Grameme
("utterance", the last rule in the grammar), it would expand it by successive
applications of such rules as suited its purpose, and end up with a string of
lexemes, which would then be converted (by something else) into words. A parser
would take that utterance and the same grammar rules, and (after getting something
else to convert the words back into lexemes) it would search the rules for ones
that fit, and, by applying them in the opposite direction, try to reduce the
string of lexemes back into the Initial Grameme once again. Obviously, there is
no trick in being a generator, or in writing a grammar that will drive a
generator. The trick is in writing a set of grammar rules that a parser can use
infallibly to retrace the steps of a generator backwards, no matter what the
generator ends up saying provided it obeys the rules. This is a grammar that
permits just such "infallible parsing" of grammatical utterances.

It is the business of a human grammar to provide a common rule-structure for
listener and speaker so that the listener can "clamp together" the fragments of
each "burst" of speech he hears with a fair chance of traversing exactly the same
route, but in the opposite direction, as that taken by the speaker in "explod-
ing" that utterance inside his head. It is the achievement of this grammar that,
with Yace's’formal demonstration of its freedom from syntactical ambiguity, that
"fair chance" of the listener using the same "route map" in the disassembly of a
human utterance as its speaker used in its assembly, has in principle become
certainty. What remains to be discovered is whether the human brain can acquire
this particular way of forming grammatical route maps, and so enjoy the formal
properties of such a grammar. For if it can, then for the first time in a human
language, what might be called the "customary disambiguation burden" on the human

listener, heretofore both very large and un-put-downable, will have been reduced
to zero.

Please refer to the Glossary for the meanings of the numerous technical words
and abbreviations used for brevity in the notes, both here and in the Corpus.

JCB, 4 Jun 82



GRAMMAR

S s T o T o T T W S D S i D S S S o S

THE LEXICON

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

A

ha aeou

(also CPDs anoi, apa,
efa, noanoi, etc.)

BAD

BUA
bua bue

CA

ca ce co cu

(also CPDs noca, canoi,
nocanoi, etc.)

CI
ci

Cul
cui

DA
ba be bo bu da de di
do du mi tu mu ti ta

The eks; notice that the new interrogative
ha is simply one of them. efa, apa, etc.,
are new A+PA CPDs; see PA. efa, for example,
means 'and-then'; enusoa = 'and-therefore!.

Used by Yacc to keep on "chewing" even if
it finds something wrong; I think Scott
disabled this in favor of ocutright refusal.

The non-designating predicate variables.

The sheks. Note that ha can't be used to ask
about sheks. Nor about keks, for that matter.

The pred-string hyphen. Monolexic.

The pred-string left paren. Monolexic.

All the variables except letter-variables;
see TAI for these.

tau tiu tua mia mua toi toa

DJAN
(all Cc-final words
found by lexer)

END
0 L]

GA
ga

GE
ge

GI
gi
GO
g0

GOou

All name-words.

A special lexeme used by the Preparser to
mark the end of the specimen, which may be
composed of multiple utterances.

The optional end-of-description punctuator,
formerly the "timeless tense" operator.

The pred-string "group-starter". Monolexic.
The "De-localizer". Prefixed to modifiers
that are to be taken as having an utter-

ance-wide significance.

The pred-string inverter. Monolexic.

The possibly temporary right-mark of the



Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

Lexeme

gou

GU
gu

GUE
gue

GUU
guu

HU

hu

(used only by CPD-lexer
to find nahu-CPDs;
otherwise like DA)

s

I
i

GRAMMAR

prenex quantifier; it needs a better word.

The general comma. Occurs as an optional
element after argsets including null ones;
and so, after all predicate expressions.

The pred-string "group-ender". Another of
the optional punctuators like GA and GU.

The possibly temporary right-mark of
shifted arguments. Needs a better word.

The argument interrogative. Not in DA only
because the Preparser uses it to form CPDs.
The nahu = 'when?' CPDs formed with hu are

new to the language.

The utterance continuer. It really stands
between "utterances" (in the narrow sense).

(also CPDs ica, icinusoa, etec.)

IE
ie

JA
Ja

The identity interrogative. Means 'Who?!
or 'Which?' Has a more limited function
than formerly.

The metaphorizer, a gobbled right-mark.
Its CPDs modify its semantics only.

(also CPDs raja, toja, etec.)

JE
Jje

JI
ji

JI0

jia jio

JUE
Jue

" KA
"ka ke ko ku

(also CPDs kanoi, nuku,
kuikou, kuinukou, etc.
Possibly also kuipa,
kuivi, kuisea, etc.)

KI

ki
* (also the CPD kinoi)

KIE

" kie

The first link in forming linked args.

The 'who is...' operator.

The subordinate clause "conjunction™".

The 2nd-&-subsequent (sutori) link in form-
ing linked args. There is no explicit 3rd
or Uth link now.

The general kek, used with KI to forethink
connections. The KUI-CPDs are phonemically
awkard. We need a better way of identifying
the causal (and possibly other PA-form) keks;
see PA for the words now lexemically equiva-
lent to kou.

The kek-infix, as in 'ka...ki...'.

Left-paren. The Preparser gobbles the
parenthetic expression into this lexeme.



GRAMMAR

Lexeme KIU Right-paren. Never seen by Parser.
: kiu
Lexeme KUI A prefix used to make keks out of the causal
: kui PAs...possibly other PAs as well. A temporary
(used only in KA-CPDs) morphophonemic solution; see KA above.
Lexeme LAE The "pointer" descriptor.
: lae sae
Lexeme LE All other descriptors except LIO. These

H le lo la lua lea are not recursive; the pointer is.

Lexeme LEPO The event-descriptor; makes subordinate
(recognized by CPD-lexer) clauses.
Lexeme LI Left-quote. The Preparser does not gobble

H 1li these quotations; the Parser parses them.

Lexeme LIE Left-strong-quote, used with a freely-chos-

H lie en pair of identical terminators. The Pre-
parser gobbles the quoted string into LIE be-
fore even attempting to lex it; thus the
string quoted can be foreign...or nonsense.

Lexeme LIO The number-descriptor.
: lio
Lexeme LIU The single-word quote. The quoted Loglan
5 liu word 1s gobbled into LIU before parsing.
Lexeme LOI Greeting word; and, now, sign of vocatives
H loi after names and of the new "Carter-Vocs".
Lexeme LU Right-quote in 'li...lu' quotation.
H 1lu
Machine-Lexemes
Lexeme M4 The first of the "Machine-Lexemes". MU is a
: M4 sign of a PA used as a predicate-inflector..
(inserted before PA The M's start with M4 because the 3 earliest
before pred-signs) ones were found unnecessary.
The Preparser can recognize things like "pred-
signs" without doing any parsing.
Lexeme M5 The Preparser inserts the M-lexemes algorithm-
: M5 ically; the Parser treats them as words; and
(inserted before KA the Postparser eliminates them and .all signs
before pred-signs) of their having been there.
Considering that all free mods have been
Lexeme M6 gobbled before M-insertion, lookahead exten-
. M6 sion is never more than LR2 except for M7 and



(inserted before A
before pred-signs)

GRAMMAR

the possibility that the negatives looked-over

for M11-12 may be recursively repeated.

Lexeme M7 M7 has the "long lookahead". It can be as
H M7 long as any prenex quantifier.
(inserted before BUA
in prenex quantifiers)
Lexeme M8 All other lookaheads are well within the
: M8 range of what we humans easily do. In 8
(inserted before KA out of 9 cases, M-insertion is just "looking
before JE/JUE) over", i.e., on the other side of, a single
word, or a recursive clump of words, before
deciding what to do. Most often that looked-
Lexeme M9 over word is an A or a KA.
s M9
(inserted before A
before JE/JUE)
Lexeme M10 For M4 it was a PA that was looked over.
B M10
(inserted before A
before PA/JI/JIO0)
Lexeme M11 For M11 & M12, it is the negative NO, which
: M11 may be a recursive clump of NO's.
(inserted before NO
before GA/POGA/MY4)
Lexeme M12
: M12
(inserted before NO
before PA)
Lexeme ME The "predicator". Monolexic.
: me
Lexeme NI All number words; indeed, all mathematical
: ho ni ne to te fo fe so expressions including dimensioned numbers.
se vo ve pire ro ru sa NI will of course eventually have its own
s¢ si so su ma mo kua internal grammar: the "expression" part of
(also CPDs neni, nenisei, MEX.
iesu, jetoni, etc.)
Lexeme NO The negative: one of the most slippery
: no words in any grammar.
Lexeme NOI The negative suffix: used only by the Pre-
H noi parser in lexing CPDs.
Lexeme NU The conversion operators.
$ nu fu ju
(also CPDs nufu, nufuju, etec.)
Léxeme PA



GRAMMAR

va vi vu pa na fa via vii viu ciu dia duo kae lia lui mou neu pie
rui sau sea sie tie kou moi rau soa
(also CPDs pana, pazi, pacenoina, etc.)

A great congeries of words are now PA: the
tensors, locators, modals and causals.
This leads to a major unification of the

grammar.
Lexeme PAUSE This is "lexemic pause"; formed by the Pre-
: s # parser and used sparingly in the grammar.

It is always accompanied in the grammar rules
by GU as a high-noise alternative.

Lexeme PO The abstraction operators; always short-
: PO pu zo scope when not in LEPO or POGA CPDs.
Lexeme POGA A new CPD: it gives PO long scope.

: (recognized by CPD-lexer)

Lexeme PREDA
: he bi bie dua
(also all pred-wds found by lexer and CPDs rari, nenira, sutori, ete.)

All predicate words except the numerical
predicates and BUA. Notice that PREDA in-
cludes the little word predicates and the
new predicate interrogative he. dua is in ‘
PREDA temporarily. dua & kin should probably
have their own lexeme.

Lexeme PUA The HB-Tags: the argument ordinals.
: pua pue pui puo puu

Lexeme RA These two words are not in NI only because the
8 rari the Preparser needs them to recognize numeri-

cal predicates.

Lexeme TAI
(simple forms like ama bai cai tai tei teo tao are recognized by
the lexer; also CPDs like baicai, ebaicai, ebaiocai, haitosaiofo, etec.)

All the letter-variables and the acronyms
made from them and from number words.
Acronym-making is new; the Corpus exhibits
the procedure.

Lexeme UI
: ua ue ui uo uu oa oe oi ou ia ii io iu ea ei eo eu ae ai ao au
bea beu cia coa dau diu dou feu foi gea kau kia kuo lau nau nea nie
pae pou rae sui voi 1loa sia siu
(also CPDs nahu, vihu, kouhu, duohu, nusoahu, etc.)

Another congeries. This one contains the
attitudinals, discursives, loa, sia & siu,
and the new hu-CPDs. Another major unifica-
tion: this one a vast simplification via the



Lexeme ZI
H za zi zu

GRAMMAR

notion of "grammatical noise"...noise which
is now being filtered out before parsing by
the "gobbling up" of these free mods by the
Preparser. This move leaves the Grammar free
to deal with the real grammatical issues pre-
sented by the utterance.

The tense auxiliaries; these occur only in
CPDs.

THE TRIAL-19 GRAMMAR

Section A. Punctuators
err => error These are the 3 optional punctuators & the
benign "error" grameme that makes them pos~
sible. That is, Yacc regards the absence
ga = err of a punctuator where one "should" occur as
GA an "error™. But it then goes on...presumab-
ly to find and report more "errors". Thus
we are using a feature of Yacec originally
designed for an entirely different pur-
gu => err purpose, namely to build compilers that
=> GU diagnose faulty programs. But we are using
its error-tolerance to provide our grammar
with an elegantly humanoid optinality of
punctuation.
GA bounds descriptions; GU bounds argsets,
gue => err and so, predexps; and GUE matches some GE
=> GUE in a predstring. And none needs to be
expressed unless it is actually to be used
to alter the structure of the utterance.
Section B. Linked Arguments
links1 B JUE arg The order of gramemes is the one in
=> JUE arg links1 gu which the listener would search them,
i.e., from the "leaves" of the parse-
tree to the "root".
links => links1 So we start with linked args, which
=> 1links M9 A links1 occur in pred-strings, which occur
=> M8 KA links KI linksi1 in arguments; and so on.
Notice that we are already relying
linkargsl = JE arg gu on M-lexemes to tell us that these

JE arg links gu

eks & keks are followed by JE/JUE.



GRAMMAR

linkargs => linkargsi The 1st optional gu's appear
=> 1linkargs M9 A linkargs? here as well; these are the
=> M8 KA linkargs KI linkargs1 only gu's that occur inside

pred-strings. It is one of
the major unifications of this grammar to treat the intern-
al "specifications" of pred-strings and the external links
between the arguments of a predicate as instances of the
same grammeme. Thus linkargs get into the grammar at only
one place: in predB in the next section.

Section C. Predicatively-~-Used Predicate Strings

predA => BUA We now commence building predstrings.
=> PREDA Notice that BUA/PREDA have parallel
=> NU BUA roles. In fact it is only BUA's role
=> NOU PREDA in prenexes that keeps it out of
=> GE kekableF gue PREDA. ‘'kekable-' means a predstring
=> ME argument gu that may have a kekked pair of predas

at its head. The distinction will
be important for descriptions.

predB => preda predB is a single pred word, or ge/-
=> predA linkargs gue-ed string, or me-ed argument, to
which linkargs can be attached. This

is a superset of what we actually do.

predC => predB predC provides for the recursive neg-
=> NO predC ation of predB's.

predD => predC predD provides for the abstraction of
=> PO kekableA predC's. kekableA is simply the kek-

able version of predC; see below. In
other words, after a PO the predC CAN
be "head-kekked".

predE => predD predE provides for both CI-ing
=> predD CI kekableD and "CUI...shekking". Note that
=> CUI kekableC CA kekableD kekables may occupy non-initial
positions in the growing pred-
strings.
predF => predE More shekking, this time without CUI.

=> predF CA kekableD

predG = predF Recursive concatenation. This builds
= predG kekableE the strings. Notice that the right-
hand forms are always kekables.

predstring => predG Inversion with GO. "kekable" on the
= predG GO kekable right is the largest kekable string.
predstring will be used later as the

predicate portion of a predexp, i.e., before argsets are



GRAMMAR

attached.

It is used in only one place in the grammar:
in the first rule ("barepred") of Sec. G.

We turn now to

the predstrings used in descriptions.

Section D. Descriptively-Used Predicate Strings

kekablel ] predB Pred-strings used in descrip-
= M5 KA kekable KI kekableA tions have one privilege that
=> NO kekableA pred-strings used predicative-
ly don't have: they can have
kekked head-predas.
kekableB => kekableA So kekableA repeats predC but with
=> PO kekableA the kekking allogram added. Aand
kekableB repeats predbD.
kekableC => kekableD kekableC produces a concatenation
=> LkekableC kekableD that is used in one place only in
both series, namely in CUI...CA in
both kekableD and in predE above.
kekableD H kekableB kekableD repeats predE but
=> kekableB CI kekableD uses kekables in both halves.
=> CUI kekableC CA kekableD
kekableE => kekableD kekableE repeats predF.
=> KkekableE CA kekableD
kekableF => kekableE kekableF repeats predG.
=> LkekableF ‘kekableE
kekable => kekableF kekable is the end of the seq-
=> kekableF GO kekable uence, and so corresponds to
predstring. It is in fact,
a pred-string with the possibility of kekked head-predas. Since
such strings would fall apart if used predicatively, the kekable
grameme is used only in descriptions; see Sec. F below.
Section E. Term & Utterance Modifiers
gap => GU These forms, unlike the gobbled
=> PAUSE free mods, have meaningful attach-
ments: when non-initial, to some
"term" of the utterance; when ini-
mod1 => PA gap tial, to the utterance as a whole.
=> PA argument gap A term is either an argument or a
predicate.
mod2 = mod 1 Notice that GU and PAUSE are "gap" options
=> M12 NO mod2 here, as for high vs. low noise conditions,



GRAMMAR

or with machine vs. human interlocutors.
gap occurs once more: in neghead in Sec. H.

mod => mod2 GI is a semantic signal that the mod, how-
=> GI mod2 ever attached, is to be taken as modifying
the utterance as a whole.
argmod1 => JI arg2 The mod~forms may apply to predi-
=> JIO sentence gu cates or utterances as well as to
arguments. The argmod-forms at-
tach only to arguments.
argmod?2 => mod A defect of the current grammar is
=> argmodl that mods are not yet kekked and
ekked, and that argmods are only
ekked. This will be repaired.
argmod => argmod2 argmod is used only in arg2 in the
=> argmod M10 A argmod2 gu next section. mod is used in both
Secs. G & H, where it will be at-
tached to both predicates and utterances.
Section F. Arguments & Argument Sets
mex => RA The only reason RA & NI are in sep-
=> NI arate lexemes is that they are dif-
ferently involved in the recogni-
of CPDs.
deseriptn => LE kekable Note that kekable is the operand
=> LE mex kekable of description. This is the pred-
=> LE argl kekable string with possible kekked head-
=> LE mex argl predas that was built in Sec. D.
In a description such a string
cannot "fall apart".
name => DJAN Name is left-recursive, the general
=> name DJAN human pattern whenever indefinite
continuation is possible.
argl => DA The 1list of argument forms. HU is
=> HU the interrogative arg. TAI is a
=> TAI letter-variable or an acronym.
=> MT BUA M7 BUA is that special use of BUA
=> LE name in prenexes. Note that 'la' is
=> LIO TAI now an allolex of LE. The LIO TAI
=> LIO mex form is for the representation of
=> descriptn ga mex by letter-variables. The oper-
=> LIU ands of LIU and LIE are gobbled;
=> LIE 30 they alone need to be shown to
=> LI utterance LU the parser. But note that LI...LU
=> LEPO sentence forms are actually parsed. The
LEPO-form is the "big one" here.
arg?2 => argl arg?2 provides for modifying argi

11



12

GRAMMAR

=> argl argmod gu and for kekking arguments in gene-

=> KA argument KI arg ral. It uses arg & argument below.
arg => arg2 arg's are the arg2's quantified

=> mex arg2 with mex, tagged with PUA, recursive-

=> PUA arg?2 ly questioned with IE or made into

. IE arg pointers with LAE.

=> LAE arg
argument => arg And finally an argument is either

=> argument A arg an arg or a string of ekked args.

arguments =>

argument

And arguments is a left-recursive-

=> arguments argument ly concatenated string of such
strings.
argset1 => gu We come now to argset, one of the
=> arguments gu more powerful structures in this
grammar. Note that argset can be
null: an optional gu. What this
argset => argsetl means is that predicate express-

= argset A argseti
=> KA argset KI argseti

ions, which are made up of pred-
strings and argsets in the next
section, always end with an option-
al gu even if they have no arguments attached. Note also
that argsets may THEMSELVES be kekked and ekked, and that
this maneuver must be somehow kept distinct from the kek-
king and ekking of the arguments themselves. That it IS
kept straight is one of MeG's more mysterious accomplish-
ments.

Section G. Predicate Expressions
The basic predicate, "barepred", is
a predicate without a tense op or
other leading mark. It's made of a
predstring + an argset with an option-
al mod between them.

barepred => predstring argset
= predstring mod argset

[Note: The ternary form of the second barepred allo-
gram is a mistake. It leaves the "clamping question"
unanswered for the human mind...indeed, for a mentally
humanoid machine: What does mod modify? Predstring

or argset? This rule slipped by our efforts to "human-
ize" the parses produced by the grammar and will be
replaced with a couple of binary rules in Trial.20.
Probably no specimen revealing the "meaningless" parses
produced by this allogram occurs in the Corpus.]

markpred e POGA sentence
=> M4 PA barepred

Next come the "markpreds". These are
either POGA-forms or barepreds marked



GRAMMAR

=> GA barepred either by a GA or by a PA foretold by
its M4. The GA-allogram will be used
only for forming negatives. After
backneg => markpred descriptions the Parser will always
=> M11 NO backneg take any GA to be the optional des-
cription terminator no matter which
GA the speaker thinks he's used!
Only markpreds can be negated, i.e.,
backpred => barepred given long-scope no. The 1st
=> backneg round of this is in backneg, which
is used only in "backpreds", i.e.,
in the right part of an ekked pair.
bareekpred => barefront M6 A backpred If the front end is bare, it's a
"bare ek-pred¥; if not, it's a
"mark ek-pred"; see below.
barefront = bareekpred argset
=> Dbarepred Barefront and markfront help to
manage this. Note the two
tracks through the grammar which
markekpred => markfront M6 A backpred preserve this distinction. Not
only negation but the definition
of imperatives will depend on it.
markfront => markekpred argset
=> markpred
frontneg => markfront Now we can negate the "mark-
=> M11 NO frontneg fronts" to get the frontnegs.
imperative => barefront And finally we can define "imp-
=> frontneg eratives", i.e., predicate ex-
pressions without 1st arguments.
kekpred => M5 KA predexp KI predexp And a predicate expression is
either an imperative or a kekked
pair of such imperatives. The
predexp = imperative latter will have their own joint
=> kekpred argset argset, even if null, and may of
course be nested.
Section H. Sentences & Utterance Parts
statement = argument predexp A statement is an argument plus
=> NO statement a predicate expression, possibly
recursively negated.
sentl => statement For the purposes of kekking sent-
=> Jimperative ences in all possible ways, we
=> keksent form the class of statements, im-

peratives, and kekked sentences.

13



14

keksent

sentence

utth

headmod

uttB

neghead

uttC

utterance

=>
=>
=>

GRAMMAR

KA sentA KI sentA
M5 KA sentA KI sentA
NO keksent

sentA
PA sentA
mod sentA

A

NO

mex

mod

arguments

sentence

arguments GOU sentence
arguments GUU sentence

Uz
LoI
KIE
DJAN

uttA
headmod
headmod uttaA

NO gap
headmod NO gap

uttB
neghead uttC

uttC

We then provide for kekking sent-
ences through two distinet allo-
grams. The one with MS5--which
shows that there is a pred-sign
beyond the KA--<will catch the ones
with imperatives as antecedents.
The one without M5 will catch the
ones with statements as antece-
dents. And, of course there is
provision for recursive negation
of the result.

We then allow these objects to
be frontally modified in 2 ways.
We now have something that can
be called a sentence.

We next create a list of utter-
ance types, starting with vari-
ous fragments of sentences, and
ending with two special classes
of sentences, namely those with
prenex quantifiers marked by GOU,
and those with shifted arguments
marked by GUU. This is oversimple
still. The next yaccing problem
is to bury prenexes more deeply
in the grammar by studying their
interactions with negation and
argument-shifting.

Since free mods are gobbled into
the preceding lexeme, they now
have to be accommodated when
initial.

So the 2nd class of utterances
are the ones that may or may not
be fitted with these "headmods",
or that may simply be such a
headmod.

A special provision must now be
made for global utterance nega-
tives. These may or may not be
preceded by headmods. ‘'"gap'"--
which is either a PAUSE or gu,
remember--is used to set them off
from more closely-attached
negatives.

These negheads can then be recur-
sively attached to utterances.

And finally, continuing utter-



GRAMMAR 15

=> I uttC ances marked with I-words are
provided for. But in this grammar,
these "continuing" forms are simply
futterances".

What has not been done is provide for the left-recursive
concatenation of these continuing utterances into strings
which are utterances in a broader sense. This omission is -
both temporary and deliberate. It makes the parses of the
Corpus easier to read when the specimens happen to be
strings of short "utterances" as defined in this narrow
sense. The Parser now parses such utterance-strings one
utterance at a time and then simply concatenates the parses
to create the parse of such a specimen.

End of Trial.19 Grammar



